Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation
نویسندگان
چکیده
Abstract The main purpose here is the study of dispersive blow-up for solutions Zakharov-Kuznetsov equation. Dispersive refers to point singularities due focusing short or long waves. We will construct initial data such that linear problem present this kind singularities. Then we show corresponding nonlinear inherited from component part Similar results are obtained generalized
منابع مشابه
Exact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation
The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...
متن کاملBlow-up of solutions to a nonlinear dispersive rod equation
In this paper, firstly we find the best constant for a convolution problem on the unit circle via a variational method. Then we apply the best constant on a nonlinear rod equation to give sufficient conditions on the initial data, which guarantee finite time singularity formation for the corresponding solutions. Mathematics Subject Classification(2000): 30C70, 37L05, 35Q58, 58E35
متن کاملSolitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملWell-posedness results for the 3D Zakharov-Kuznetsov equation
We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.
متن کاملAsymptotic Behavior for a Class of Solutions to the Critical Modified Zakharov-kuznetsov Equation
We consider the initial value problem (IVP) associated to the modified Zakharov-Kuznetsov (mZK) equation ut + 6uux + uxxx + uxyy = 0, (x, y) ∈ R, t ∈ R, which is known to have global solution for given data in u(x, y, 0) = u0(x, y) ∈ H(R) satisfying ‖u0‖L2 < √ 3‖φ‖L2 , where φ is a solitary wave solution. In this work, the issue of the asymptotic behavior of the solutions of the modified Zakhar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2021
ISSN: ['0294-1449', '1873-1430']
DOI: https://doi.org/10.1016/j.anihpc.2020.07.002